Amyotrophic Lateral Sclerosis Associated with Statin Use: A Disproportionality Analysis of the FDA’s Adverse Event Reporting System



Apparent elevations in reporting of amyotrophic lateral sclerosis (ALS)-like conditions associated with statin use have been previously described from data obtained via US and European databases.


The aim of this study was to examine US FDA Adverse Event Reporting System (FAERS) data to compare reporting odds ratios (RORs) of ALS and ALS-like conditions between statins and other drugs, for each statin agent.


We assessed for disproportional rates of reported ALS and ALS-related conditions for each statin agent separately by using the ROR formula. FAERS data were analyzed through September 2015.


RORs for ALS were elevated for all statins, with elevations possibly stronger for lipophilic statins. RORs ranged from 9.09 (6.57–12.6) and 16.2 (9.56–27.5) for rosuvastatin and pravastatin (hydrophilic) to 17.0 (14.1–20.4), 23.0 (18.3–29.1), and 107 (68.5–167) for atorvastatin, simvastatin, and lovastatin (lipophilic), respectively. For simvastatin, an ROR of 57.1 (39.5–82.7) was separately present for motor neuron disease.


These findings extend previous evidence showing that significantly elevated ALS reporting extends to individual statin agents, and add to concerns about potential elevated occurrence of ALS-like conditions in association with statin usage.


Compliance with Ethical Standards


This study had no funding source.

Conflict of interest

Alexis K. Messner and Hayley J. Koslik declare they have no conflict of interest and their efforts on this were unfunded. Beatrice A. Golomb is the executor of an estate (and will be among the beneficiaries) that includes some stock in drug companies that make statins. The estate lawyer has advised no changes be made to the portfolio until after distribution. Her effort on this project was unfunded. Keith B. Hoffman is a past employee of Advera Health Analytics, Inc. and is a stockholder and stock option holder in the company. Abril Verden is a current employee of Advera Health Analytics, Inc. and is a stock option holder in the company.


  1. 1.
    Reinberg S. New guidelines may widen use of statins: recommendations focus on patient risk factors rather than cholesterol numbers, experts say. 2013. Accessed 30 Oct 2017.
  2. 2.
    Szabo L. New heart guidelines could put more Americans on statins. USA Today. 2013. Accessed 30 Oct 2017.
  3. 3.
    NICE publishes new draft guidelines on statin use. NHS Choices. 2014. Accessed 30 Oct 2017.
  4. 4.
    Hope J. One in four adults to be prescribed daily statins: now patients with 10% heart attack risk will be offered drug. Daily Mail. 2014. Accessed 30 Oct 2017.
  5. 5.
    Cham S, Evans MA, Denenberg JO, Golomb BA. Statin-associated muscle-related adverse effects: a case series of 354 patients. Pharmacotherapy. 2010;30:541–53.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Golomb BA, Koperski S. Who becomes weak on statins? Effect modification exposed in a RCT by risk factor compounding. Circulation. 2013;127:AP072.Google Scholar
  7. 7.
    Golomb BA, Evans MA, Dimsdale JE, White HL. Effects of statins on energy and fatigue with exertion: results from a randomized controlled trial. Arch Intern Med. 2012;172:1180–2.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Phillips PS, Haas RH, Bannykh S, Hathaway S, Gray NL, Kimura BJ, et al. Statin-associated myopathy with normal creatine kinase levels. Ann Intern Med. 2002;137:581–5.CrossRefPubMedGoogle Scholar
  9. 9.
    Ayanian JZ, Fuchs CS, Stone RM. Lovastatin and rhabdomyolysis. Ann Intern Med. 1988;109:682–3.CrossRefPubMedGoogle Scholar
  10. 10.
    Kogan AD, Orenstein S. Lovastatin-induced acute rhabdomyolysis. Postgrad Med J. 1990;66:294–6.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Manoukian AA, Bhagavan NV, Hayashi T, Nestor TA, Rios C, Scottolini AG. Rhabdomyolysis secondary to lovastatin therapy. Clin Chem. 1990;36:2145–7.PubMedGoogle Scholar
  12. 12.
    Berland Y, Vacher Coponat H, Durand C, Baz M, Laugier R, Musso JL. Rhabdomyolysis with simvastatin use. Nephron. 1991;57:365–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Deslypere JP, Vermeulen A. Rhabdomyolysis and simvastatin. Ann Intern Med. 1991;114:342.CrossRefPubMedGoogle Scholar
  14. 14.
    Sylvain-Moore H, Worden JP Jr. Lovastatin-associated rhabdomyolysis. Heart Lung. 1991;20:464–6.PubMedGoogle Scholar
  15. 15.
    Bizzaro N, Bagolin E, Milani L, Cereser C, Finco B. Massive rhabdomyolysis and simvastatin. Clin Chem. 1992;38:504.Google Scholar
  16. 16.
    Dromer C, Vedrenne C, Billey T, Pages M, Fournie B, Fournie A. Rhabdomyolysis due to simvastin. Apropos of a case with review of the literature. Rev Rhum Mal Osteoartic. 1992;59:281–3.PubMedGoogle Scholar
  17. 17.
    Phillips PS. How common is rhabdomyolysis in patients receiving lipid-lowering therapy? Nat Clin Pract Cardiovasc Med. 2005;2:130–1.CrossRefPubMedGoogle Scholar
  18. 18.
    Antons KA, Williams CD, Baker SK, Phillips PS. Clinical perspectives of statin-induced rhabdomyolysis. Am J Med. 2006;119:400–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Linares L, Golomb B, Jaojoco J, Sikand H, Phillips PS. The modern spectrum of rhabdomyolysis: drug toxicity revealed by creatine kinase screening. Curr Drug Saf. 2009;4:181–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Grable-Esposito P, Katzberg HD, Greenberg SA, Srinivasan J, Katz J, Amato AA. Immune-mediated necrotizing myopathy associated with statins. Muscle Nerve. 2010;41:185–90.PubMedGoogle Scholar
  21. 21.
    Liang C, Needham M. Necrotizing autoimmune myopathy. Curr Opin Rheumatol. 2011;23:612–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Mammen AL, Chung T, Christopher-Stine L, Rosen P, Rosen A, Doering KR, et al. Autoantibodies against 3-hydroxy-3-methylglutaryl-coenzyme A reductase in patients with statin-associated autoimmune myopathy. Arthritis Rheum. 2011;63:713–21.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mohassel P, Mammen AL. Statin-associated autoimmune myopathy and anti-HMGCR autoantibodies. Muscle Nerve. 2013;48:477–83.CrossRefPubMedGoogle Scholar
  24. 24.
    Wu Y, Lach B, Provias JP, Tarnopolsky MA, Baker SK. Statin-associated autoimmune myopathies: a pathophysiologic spectrum. Can J Neurol Sci. 2014;41:638–47.CrossRefPubMedGoogle Scholar
  25. 25.
    England JD, Walsh JC, Stewart P, Boyd I, Rohan A, Halmagyi GM. Mitochondrial myopathy developing on treatment with the HMG CoA reductase inhibitors—simvastatin and pravastatin. Aust NZ J Med. 1995;25:374–5.CrossRefGoogle Scholar
  26. 26.
    Diaczok BJ, Shali R. Statins unmasking a mitochondrial myopathy: a case report and proposed mechanism of disease. South Med J. 2003;96:318–20.CrossRefPubMedGoogle Scholar
  27. 27.
    Engel WK. Reversible ocular myasthenia gravis or mitochondrial myopathy from statins? Lancet. 2003;361:85–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Troseid M, Henriksen OA, Lindal S. Statin-associated myopathy with normal creatine kinase levels. Case report from a Norwegian family. APMIS. 2005;113:635–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Thomas JE, Lee N, Thompson PD. Statins provoking MELAS syndrome. A case report. Eur Neurol. 2007;57:232–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Phillips PS, Haas RH. Statin myopathy as a metabolic muscle disease. Expert Rev Cardiovasc Ther. 2008;6:971–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Vladutiu GD. Genetic predisposition to statin myopathy. Curr Opin Rheumatol. 2008;20:648–55.CrossRefPubMedGoogle Scholar
  32. 32.
    Chariot P, Abadia R, Agnus D, Danan C, Charpentier C, Gherardi RK. Simvastatin-induced rhabdomyolysis followed by a MELAS syndrome. Am J Med. 1993;94:109–10.CrossRefPubMedGoogle Scholar
  33. 33.
    Golomb BA. Misinterpretation of trial evidence on statin adverse effects may harm patients. Eur J Prev Cardiol. 2015;22:492–3.CrossRefPubMedGoogle Scholar
  34. 34.
    Schymick JC, Talbot K, Traynor BJ. Genetics of sporadic amyotrophic lateral sclerosis. Hum Mol Genet. 2007;16(Spec No. 2):R233–42.CrossRefPubMedGoogle Scholar
  35. 35.
    Dupuis L, Pradat PF, Ludolph AC, Loeffler JP. Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol. 2011;10:75–82.CrossRefPubMedGoogle Scholar
  36. 36.
    Hervias I, Beal MF, Manfredi G. Mitochondrial dysfunction and amyotrophic lateral sclerosis. Muscle Nerve. 2006;33:598–608.CrossRefPubMedGoogle Scholar
  37. 37.
    Bacman SR, Bradley WG, Moraes CT. Mitochondrial involvement in amyotrophic lateral sclerosis: trigger or target? Mol Neurobiol. 2006;33:113–31.CrossRefPubMedGoogle Scholar
  38. 38.
    Dupuis L, Gonzalez de Aguilar JL, Oudart H, de Tapia M, Barbeito L, Loeffler JP. Mitochondria in amyotrophic lateral sclerosis: a trigger and a target. Neurodegener Dis. 2004;1:245–54.CrossRefPubMedGoogle Scholar
  39. 39.
    Menzies FM, Ince PG, Shaw PJ. Mitochondrial involvement in amyotrophic lateral sclerosis. Neurochem Int. 2002;40:543–51.CrossRefPubMedGoogle Scholar
  40. 40.
    Murata T, Ohtsuka C, Terayama Y. Increased mitochondrial oxidative damage in patients with sporadic amyotrophic lateral sclerosis. J Neurol Sci. 2008;267:66–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Murata T, Ohtsuka C, Terayama Y. Increased mitochondrial oxidative damage and oxidative DNA damage contributes to the neurodegenerative process in sporadic amyotrophic lateral sclerosis. Free Radic Res. 2008;42:221–5.CrossRefPubMedGoogle Scholar
  42. 42.
    Ilieva EV, Ayala V, Jove M, Dalfo E, Cacabelos D, Povedano M, et al. Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain. 2007;130:3111–23.CrossRefPubMedGoogle Scholar
  43. 43.
    Niebroj-Dobosz I, Dziewulska D, Kwiecinski H. Oxidative damage to proteins in the spinal cord in amyotrophic lateral sclerosis (ALS). Folia Neuropathol. 2004;42:151–6.PubMedGoogle Scholar
  44. 44.
    Edwards IR, Star K, Kiuru A. Statins, neuromuscular degenerative disease and an amyotrophic lateral sclerosis-like syndrome: an analysis of individual case safety reports from vigibase. Drug Saf. 2007;30:515–25.CrossRefPubMedGoogle Scholar
  45. 45.
    Golomb BA, Kwon EK, Koperski S, Evans MA. Amyotrophic lateral sclerosis-like conditions in possible association with cholesterol-lowering drugs: an analysis of patient reports to the University of California, San Diego (UCSD) Statin Effects Study. Drug Saf. 2009;32:649–61.CrossRefPubMedGoogle Scholar
  46. 46.
    Colman E, Szarfman A, Wyeth J, Mosholder A, Jillapalli D, Levine J, et al. An evaluation of a data mining signal for amyotrophic lateral sclerosis and statins detected in FDA’s spontaneous adverse event reporting system. Pharmacoepidemiol Drug Saf. 2008;17:1068–76.CrossRefPubMedGoogle Scholar
  47. 47.
    Zinman L, Sadeghi R, Gawel M, Patton D, Kiss A. Are statin medications safe in patients with ALS? Amyotroph Lateral Scler. 2008;9:223–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Nefussy B, Hirsch J, Cudkowicz ME, Drory VE. Gender-based effect of statins on functional decline in amyotrophic lateral sclerosis. J Neurol Sci. 2011;300:23–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Murinson BB, Haughey NJ, Maragakis NJ. Selected statins produce rapid spinal motor neuron loss in vitro. BMC Musculoskelet Disord. 2012;13:100.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Su XW, Nandar W, Neely EB, Simmons Z, Connor JR. Statins accelerate disease progression and shorten survival in SOD1(G93A) mice. Muscle Nerve. 2016;54:284–91.CrossRefPubMedGoogle Scholar
  51. 51.
    Bate A, Evans SJ. Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidemiol Drug Saf. 2009;18:427–36.CrossRefPubMedGoogle Scholar
  52. 52.
    Hoffman KB, Dimbil M, Kyle RF, Tatonetti NP, Erdman CB, Demakas A, et al. A drug safety rating system based on postmarketing costs associated with adverse events and patient outcomes. J Manag Care Spec Pharm. 2015;21:1134–43.CrossRefPubMedGoogle Scholar
  53. 53.
    FDA. FDA Adverse Event Reporting System (FAERS): latest quarterly data files. 2015.Google Scholar
  54. 54.
    Peters L, Kapusnik-Uner JE, Nguyen T, Bodenreider O. An approximate matching method for clinical drug names. AMIA Annu Symp Proc. 2011;2011:1117–26.PubMedPubMedCentralGoogle Scholar
  55. 55.
    MedDRA. Medical dictionary for regulatory activities and the maintenance and support services. 2015. Accessed 30 Oct 2017.
  56. 56.
    Zheng Z, Sheng L, Shang H. Statins and amyotrophic lateral sclerosis: a systematic review and meta-analysis. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14:241–5.CrossRefPubMedGoogle Scholar
  57. 57.
    Sorensen HT, Riis AH, Lash TL, Pedersen L. Statin use and risk of amyotrophic lateral sclerosis and other motor neuron disorders. Circ Cardiovasc Qual Outcomes. 2010;3:413–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Chio A, Calvo A, Ilardi A, Cavallo E, Moglia C, Mutani R, et al. Lower serum lipid levels are related to respiratory impairment in patients with ALS. Neurology. 2009;73:1681–5.CrossRefPubMedGoogle Scholar
  59. 59.
    Dupuis L, Corcia P, Fergani A, Gonzalez De Aguilar JL, Bonnefont-Roussel D, Bittar R, et al. Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. Neurology. 2008;70:1004–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Drory VE, Bronipolsky T, Artamonov I, Nefussy B. Influence of statins treatment on survival in patients with amyotrophic lateral sclerosis. J Neurol Sci. 2008;273:81–3.CrossRefPubMedGoogle Scholar
  61. 61.
    Qureshi M, Shui A, Dibernardo AB, Brown RH Jr, Schoenfeld DA, Cudkowicz ME. Medications and laboratory parameters as prognostic factors in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2008;9:369–74.CrossRefPubMedGoogle Scholar
  62. 62.
    Golomb BA, Evans MA. Statin adverse effects: a review of the literature and evidence for a mitochondrial mechanism. Am J Cardiovasc Drugs. 2008;8:373–418.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Krasnianski A, Deschauer M, Neudecker S, Gellerich FN, Muller T, Schoser BG, et al. Mitochondrial changes in skeletal muscle in amyotrophic lateral sclerosis and other neurogenic atrophies. Brain. 2005;128:1870–6.CrossRefPubMedGoogle Scholar
  64. 64.
    Vielhaber S, Kunz D, Winkler K, Wiedemann FR, Kirches E, Feistner H, et al. Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadic amyotrophic lateral sclerosis. Brain. 2000;123:1339–48.CrossRefPubMedGoogle Scholar
  65. 65.
    Vielhaber S, Winkler K, Kirches E, Kunz D, Buchner M, Feistner H, et al. Visualization of defective mitochondrial function in skeletal muscle fibers of patients with sporadic amyotrophic lateral sclerosis. J Neurol Sci. 1999;169:133–9.CrossRefPubMedGoogle Scholar
  66. 66.
    Wiedemann FR, Winkler K, Kuznetsov AV, Bartels C, Vielhaber S, Feistner H, et al. Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. J Neurol Sci. 1998;156:65–72.CrossRefPubMedGoogle Scholar
  67. 67.
    Hoffman KB, Kraus C, Dimbil M, Golomb BA. A survey of the FDA’s AERS database regarding muscle and tendon adverse events linked to the statin drug class. PLoS One. 2012;7:e42866.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Kolata G. When drugs cause problems they are supposed to prevent. New York Times. 2010; October 16. Accessed 30 Oct 2017.
  69. 69.
    Golomb B. Effect modification. What scientific term or concept ought to be more widely known. 2017. Accessed 30 Oct 2017.
  70. 70.
    Food and Drug Administration. FDA Public Health Advisory on Crestor (rosuvastatin). 2005. Accessed 30 Oct 2017.
  71. 71.
    Douglas K, O’Malley PG, Jackson JL. Meta-analysis: the effect of statins on albuminuria. Ann Intern Med. 2006;145:117–24.CrossRefPubMedGoogle Scholar
  72. 72.
    Sandhu S, Wiebe N, Fried LF, Tonelli M. Statins for improving renal outcomes: a meta-analysis. J Am Soc Nephrol. 2006;17:2006–16.CrossRefPubMedGoogle Scholar
  73. 73.
    McNeil JJ, Grabsch EA, McDonald MM. Postmarketing surveillance: strengths and limitations. The flucloxacillin-dicloxacillin story. Med J Aust. 1999;170:270–3.PubMedGoogle Scholar
  74. 74.
    Arnaiz JA, Carne X, Riba N, Codina C, Ribas J, Trilla A. The use of evidence in pharmacovigilance. Case reports as the reference source for drug withdrawals. Eur J Clin Pharmacol. 2001;57:89–91.CrossRefPubMedGoogle Scholar
  75. 75.
    Ohmura C, Watada H, Hirose T, Tanaka Y, Kawamori R. Acute onset and worsening of diabetes concurrent with administration of statins. Endocr J. 2005;52:369–72.CrossRefPubMedGoogle Scholar
  76. 76.
    Naranjo CA, Busto U, Sellers EM, Sandor P, Ruiz I, Roberts EA, et al. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther. 1981;30:239–45.CrossRefPubMedGoogle Scholar
  77. 77.
    Fontanarosa PB, Rennie D, DeAngelis CD. Postmarketing surveillance—lack of vigilance, lack of trust. JAMA. 2004;292:2647–50.CrossRefPubMedGoogle Scholar
  78. 78.
    Sinzinger H, Oguogho A. Variable influence of statins on isoprostanes in hyperlipidemia. Adv Exp Med Biol. 2003;525:209–12.CrossRefPubMedGoogle Scholar
  79. 79.
    Sinzinger H, Chehne F, Lupattelli G. Oxidation injury in patients receiving HMG-CoA reductase inhibitors: occurrence in patients without enzyme elevation or myopathy. Drug Saf. 2002;25:877–83.CrossRefPubMedGoogle Scholar
  80. 80.
    Sinzinger H, Lupattelli G, Chehne F, Oguogho A, Furberg CD. Isoprostane 8-epi-PGF2alpha is frequently increased in patients with muscle pain and/or CK-elevation after HMG-Co-enzyme-A-reductase inhibitor therapy. J Clin Pharm Ther. 2001;26:303–10.CrossRefPubMedGoogle Scholar
  81. 81.
    Vaughan RA, Garcia-Smith R, Bisoffi M, Conn CA, Trujillo KA. Ubiquinol rescues simvastatin-suppression of mitochondrial content, function and metabolism: implications for statin-induced rhabdomyolysis. Eur J Pharmacol. 2013;711:1–9.CrossRefPubMedGoogle Scholar
  82. 82.
    Larsen S, Stride N, Hey-Mogensen M, Hansen CN, Bang LE, Bundgaard H, et al. Simvastatin effects on skeletal muscle: relation to decreased mitochondrial function and glucose intolerance. J Am Coll Cardiol. 2013;61:44–53.CrossRefPubMedGoogle Scholar
  83. 83.
    Tavintharan S, Ong CN, Jeyaseelan K, Sivakumar M, Lim SC, Sum CF. Reduced mitochondrial coenzyme Q10 levels in HepG2 cells treated with high-dose simvastatin: a possible role in statin-induced hepatotoxicity? Toxicol Appl Pharmacol. 2007;223:173–9.CrossRefPubMedGoogle Scholar
  84. 84.
    Nadanaciva S, Dykens JA, Bernal A, Capaldi RA, Will Y. Mitochondrial impairment by PPAR agonists and statins identified via immunocaptured OXPHOS complex activities and respiration. Toxicol Appl Pharmacol. 2007;223:277–87.CrossRefPubMedGoogle Scholar
  85. 85.
    Velho JA, Okanobo H, Degasperi GR, Matsumoto MY, Alberici LC, Cosso RG, et al. Statins induce calcium-dependent mitochondrial permeability transition. Toxicology. 2006;219:124–32.CrossRefPubMedGoogle Scholar
  86. 86.
    Gambelli S, Dotti MT, Malandrini A, Mondelli M, Stromillo ML, Gaudiano C, et al. Mitochondrial alterations in muscle biopsies of patients on statin therapy. J Submicrosc Cytol Pathol. 2004;36:85–9.PubMedGoogle Scholar
  87. 87.
    Kristensen M, Christensen P, Hallas J. The effect of statins on average survival in randomised trials, an analysis of endpoint postponement. BMJ Open. 2015;5:e007118.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    AHRQ. The Medical Expenditure Panel Survey (MEPS). 2015. Accessed 30 Oct 2017.
  89. 89.
    EvaluatePharma. USA sales, volume and price analysis. 2014; Version 1.8. Accessed 30 Oct 2017.



About The Author